Internal
problem
ID
[2815]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.3
(Stability
of
equilibrium
solutions).
Page
393
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:21:06 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)^2+y(t)^2+1, diff(y(t),t) = x(t)^2-y(t)^2]; dsolve(ode);
ode={D[x[t],t]==x[t]^2+y[t]^2+1,D[y[t],t]==x[t]^2-y[t]^2}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t)**2 - y(t)**2 + Derivative(x(t), t) - 1,0),Eq(-x(t)**2 + y(t)**2 + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out