Internal
problem
ID
[2794]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.1
(Introduction).
Page
377
Problem
number
:
6
Date
solved
:
Sunday, March 30, 2025 at 12:20:37 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = cos(y(t)), diff(y(t),t) = sin(x(t))-1]; dsolve(ode);
ode={D[x[t],t]==Cos[y[t]],D[y[t],t]==Sin[x[t]]-1}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-cos(y(t)) + Derivative(x(t), t),0),Eq(-sin(x(t)) + Derivative(y(t), t) + 1,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)