14.27.1 problem 1

Internal problem ID [2789]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.1 (Introduction). Page 3770
Problem number : 1
Date solved : Sunday, March 30, 2025 at 12:20:32 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 y \left (t \right )-2 y \left (t \right )^{2}-3 x \left (t \right ) y \left (t \right ) \end{align*}

Maple
ode:=[diff(x(t),t) = x(t)-x(t)^2-2*x(t)*y(t), diff(y(t),t) = 2*y(t)-2*y(t)^2-3*x(t)*y(t)]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica
ode={D[x[t],t]==x[t]-x[t]^2-2*x[t]*y[t],D[y[t],t]==2*y[t]-2*y[t]^2-3*x[t]*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t)**2 + 2*x(t)*y(t) - x(t) + Derivative(x(t), t),0),Eq(3*x(t)*y(t) + 2*y(t)**2 - 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
Timed Out