Internal
problem
ID
[2789]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.1
(Introduction).
Page
3770
Problem
number
:
1
Date
solved
:
Sunday, March 30, 2025 at 12:20:32 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)-x(t)^2-2*x(t)*y(t), diff(y(t),t) = 2*y(t)-2*y(t)^2-3*x(t)*y(t)]; dsolve(ode);
ode={D[x[t],t]==x[t]-x[t]^2-2*x[t]*y[t],D[y[t],t]==2*y[t]-2*y[t]^2-3*x[t]*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t)**2 + 2*x(t)*y(t) - x(t) + Derivative(x(t), t),0),Eq(3*x(t)*y(t) + 2*y(t)**2 - 2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out