15.3.10 problem 10

Internal problem ID [2903]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 7, page 28
Problem number : 10
Date solved : Sunday, March 30, 2025 at 12:48:57 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x +2 y+2&=\left (2 x +y-1\right ) y^{\prime } \end{align*}

Maple. Time used: 0.232 (sec). Leaf size: 116
ode:=x+2*y(x)+2 = (2*x+y(x)-1)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\frac {1}{6}+\frac {\left (1-i \sqrt {3}\right ) \left (3 \sqrt {3}\, \sqrt {-1+243 \left (x -\frac {4}{3}\right )^{2} c_1^{2}}+\left (-81 x +108\right ) c_1 \right )^{{2}/{3}}}{18}+\frac {i \sqrt {3}}{6}+\left (3 \sqrt {3}\, \sqrt {-1+243 \left (x -\frac {4}{3}\right )^{2} c_1^{2}}-81 c_1 x +108 c_1 \right )^{{1}/{3}} \left (x -3\right ) c_1}{\left (3 \sqrt {3}\, \sqrt {-1+243 \left (x -\frac {4}{3}\right )^{2} c_1^{2}}+\left (-81 x +108\right ) c_1 \right )^{{1}/{3}} c_1} \]
Mathematica. Time used: 60.203 (sec). Leaf size: 1687
ode=(x+2*y[x]+2)==(2*x+y[x]-1)*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - (2*x + y(x) - 1)*Derivative(y(x), x) + 2*y(x) + 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out