Internal
problem
ID
[2639]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.8.2,
Regular
singular
points,
the
method
of
Frobenius.
Excercises
page
216
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:12:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=t*(t-2)^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+y(t) = 0; dsolve(ode,y(t),type='series',t=2);
ode=t*(t-2)^2*D[y[t],{t,2}]+t*D[y[t],t]+y[t]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[t],{t,2,5}]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*(t - 2)**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_regular",x0=2,n=6)
ValueError : ODE t*(t - 2)**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) + y(t) does not match hint 2nd_power_series_regular