15.4.4 problem 4

Internal problem ID [2917]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 8, page 34
Problem number : 4
Date solved : Sunday, March 30, 2025 at 12:55:19 AM
CAS classification : [_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]

\begin{align*} x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 55
ode:=x*(6*x*y(x)+5)+(2*x^3+3*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 x^{3}}{3}-\frac {\sqrt {4 x^{6}-15 x^{2}-6 c_1}}{3} \\ y &= -\frac {2 x^{3}}{3}+\frac {\sqrt {4 x^{6}-15 x^{2}-6 c_1}}{3} \\ \end{align*}
Mathematica. Time used: 0.159 (sec). Leaf size: 69
ode=x*(6*x*y[x]+5)+(2*x^3+3*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{3} \left (-2 x^3-\sqrt {4 x^6-15 x^2+9 c_1}\right ) \\ y(x)\to \frac {1}{3} \left (-2 x^3+\sqrt {4 x^6-15 x^2+9 c_1}\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(6*x*y(x) + 5) + (2*x**3 + 3*y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out