Internal
problem
ID
[2817]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.3
(Stability
of
equilibrium
solutions).
Page
393
Problem
number
:
4
Date
solved
:
Sunday, March 30, 2025 at 12:21:08 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 6*x(t)-6*x(t)^2-2*x(t)*y(t), diff(y(t),t) = 4*y(t)-4*y(t)^2-2*x(t)*y(t)]; dsolve(ode);
ode={D[x[t],t]==6*x[t]-6*x[t]^2-2*x[t]*y[t],D[y[t],t]==4*y[t]-4*y[t]^2-2*x[t]*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(6*x(t)**2 + 2*x(t)*y(t) - 6*x(t) + Derivative(x(t), t),0),Eq(2*x(t)*y(t) + 4*y(t)**2 - 4*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out