Internal
problem
ID
[2812]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.2
(Stability
of
linear
systems).
Page
383
Problem
number
:
14
Date
solved
:
Sunday, March 30, 2025 at 12:21:03 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = x__2(t), diff(x__2(t),t) = -1/2*(x__1(t)^2+(x__1(t)^2+4*x__2(t)^2)^(1/2))*x__1(t)]; dsolve(ode);
ode={D[x1[t],t]==x2[t],D[x2[t],t]==-1/2*(x1[t]^2+Sqrt[x1[t]^2+4*x2[t]^2])*x1[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-x__2(t) + Derivative(x__1(t), t),0),Eq((sqrt(x__1(t)**2 + 4*x__2(t)**2) + x__1(t)**2)*x__1(t)/2 + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
Timed Out