5.3.57 Problems 5601 to 5700

Table 5.147: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

19308

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

19310

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19314

\[ {} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

19318

\[ {} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19321

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19322

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

19323

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19324

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19327

\[ {} y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

19328

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19331

\[ {} y^{\prime \prime } y^{\prime \prime \prime } = 2 \]

19333

\[ {} a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19335

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19337

\[ {} y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19341

\[ {} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19342

\[ {} x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19343

\[ {} n \,x^{3} y^{\prime \prime \prime } = y-x y^{\prime } \]

19344

\[ {} x y y^{\prime \prime }+{y^{\prime }}^{2} x = 3 y y^{\prime } \]

19345

\[ {} 2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19346

\[ {} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n} \]

19347

\[ {} x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19348

\[ {} x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19349

\[ {} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19355

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19356

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19357

\[ {} -a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19361

\[ {} 2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

19362

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19363

\[ {} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

19364

\[ {} y^{\prime \prime }-y^{\prime } x^{2}+x y = x \]

19365

\[ {} x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

19366

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

19367

\[ {} \left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

19368

\[ {} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19369

\[ {} y^{\prime \prime }+x y^{\prime }-y = X \]

19370

\[ {} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19372

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = x^{3} {\mathrm e}^{x} \]

19373

\[ {} y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

19375

\[ {} y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19378

\[ {} y^{\prime \prime }-2 b x y^{\prime }+y b^{2} x^{2} = 0 \]

19379

\[ {} y^{\prime \prime }-2 b x y^{\prime }+y b^{2} x^{2} = x \]

19380

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

19381

\[ {} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

19382

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x} \sec \left (x \right ) \]

19383

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

19385

\[ {} y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

19386

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

19387

\[ {} x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

19388

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

19389

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

19391

\[ {} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

19392

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+m^{2} y = 0 \]

19393

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2} = 0 \]

19394

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y = 0 \]

19395

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

19396

\[ {} y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4} = 0 \]

19397

\[ {} y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 y \sin \left (x \right )^{2} = 0 \]

19398

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19399

\[ {} x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

19400

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

19401

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19405

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

19407

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }-\left (x^{2}+1\right ) y = x \]

19408

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = -4 x^{3} \]

19409

\[ {} x y^{\prime }-y = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

19410

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19411

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19412

\[ {} \left (x^{2}+a \right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19414

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = x^{3}+3 x \]

19415

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

19417

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {a^{2} y}{-x^{2}+1} = 0 \]

19418

\[ {} \left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

19420

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

19421

\[ {} x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

19422

\[ {} y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

19423

\[ {} \left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 y^{\prime } x^{2}-12 \left (x -2\right ) y = 0 \]

19424

\[ {} x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

19427

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-y a^{2} = 0 \]

19428

\[ {} x y^{\prime \prime } \left (x \cos \left (x \right )-2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 0 \]

19429

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

19430

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]

19431

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime } = m^{2} y \]

19432

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

19433

\[ {} x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime }+2 x y = 2 x \]

19434

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19435

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19436

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

19440

\[ {} x^{3}+x y^{2}+y a^{2}+\left (y^{3}+x^{2} y-a^{2} x \right ) y^{\prime } = 0 \]

19441

\[ {} \left (x +2 y^{3}\right ) y^{\prime } = y \]

19449

\[ {} \left (x +2 y^{3}\right ) y^{\prime } = y \]

19451

\[ {} y^{\prime }+x \sin \left (2 y\right ) = x^{3} \cos \left (y\right )^{2} \]

19454

\[ {} \left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0 \]

19456

\[ {} 3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime } = 0 \]

19470

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

19474

\[ {} x^{2} \left ({y^{\prime }}^{2}-y^{2}\right )+y^{2} = x^{4}+2 x y y^{\prime } \]

19478

\[ {} y = \frac {x}{y^{\prime }}-a y^{\prime } \]

19479

\[ {} {y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

19481

\[ {} y^{\prime } = \tan \left (x -\frac {y^{\prime }}{1+{y^{\prime }}^{2}}\right ) \]

19482

\[ {} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

19484

\[ {} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]