Internal
problem
ID
[19414]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
at
end
of
chapter
VIII.
Page
141
Problem
number
:
2
(iv)
Date
solved
:
Monday, March 31, 2025 at 07:13:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*x*diff(y(x),x)+(x^2+1)*y(x) = x^3+3*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*x*D[y[x],x]+(x^2+1)*y[x]==x^3+3*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + 2*x*Derivative(y(x), x) - 3*x + (x**2 + 1)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(x**2 - x*y(x) + 3) - y(x) - Derivative(y(x), (x, 2)))/(2*x) cannot be solved by the factorable group method