83.41.3 problem 2 (ii)

Internal problem ID [19412]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VIII. Linear equations of second order. Excercise at end of chapter VIII. Page 141
Problem number : 2 (ii)
Date solved : Monday, March 31, 2025 at 07:12:57 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+a \right ) y^{\prime \prime }-2 x y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=(x^2+a)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \left (x^{2}-a \right ) \]
Mathematica. Time used: 0.065 (sec). Leaf size: 28
ode=(a+x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -c_1 \left (\sqrt {a}+i x\right )^2-c_2 x \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + (a + x**2)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False