Internal
problem
ID
[19412]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
at
end
of
chapter
VIII.
Page
141
Problem
number
:
2
(ii)
Date
solved
:
Monday, March 31, 2025 at 07:12:57 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2+a)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a+x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (a + x**2)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False