Internal
problem
ID
[19387]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(B)
at
page
128
Problem
number
:
13
Date
solved
:
Monday, March 31, 2025 at 07:12:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*n*x*diff(y(x),x)+(a^2*x^2+n^2+n)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*n*x*D[y[x],x]+(n^2+n+a^2*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(-2*n*x*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (a**2*x**2 + n**2 + n)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : invalid input: 2*n + 1