Internal
problem
ID
[19432]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
at
end
of
chapter
VIII.
Page
141
Problem
number
:
5
(x)
Date
solved
:
Monday, March 31, 2025 at 07:13:33 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+(1-1/x)*diff(y(x),x)+4*x^2*y(x)*exp(-2*x) = 4*(x^3+x^2)*exp(-3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(1-1/x)*D[y[x],x]+4*x^2*y[x]*Exp[-2*x]==4*(x^2+x^3)*Exp[-3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*y(x)*exp(-2*x) + (1 - 1/x)*Derivative(y(x), x) - (4*x**3 + 4*x**2)*exp(-3*x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(4*x**3 - 4*x**2*y(x)*exp(x) + 4*x**2 - exp(3*x)*Derivative(y(x), (x, 2)))*exp(-3*x)/(x - 1) + Derivative(y(x), x) cannot be solved by the factorable group method