Internal
problem
ID
[19397]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(C)
at
page
133
Problem
number
:
9
Date
solved
:
Monday, March 31, 2025 at 07:12:31 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(3*sin(x)-cot(x))*diff(y(x),x)+2*sin(x)^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(3*Sin[x]-Cot[x])*D[y[x],x]+2*y[x]*Sin[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*sin(x) - 1/tan(x))*Derivative(y(x), x) + 2*y(x)*sin(x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (2*y(x)*sin(x)**2 + Derivative(y(x), (x, 2)))*tan(x)/(3*sin(x)*tan(x) - 1) + Derivative(y(x), x) cannot be solved by the factorable group method