5.3.58 Problems 5701 to 5753

Table 5.149: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

19485

\[ {} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

19487

\[ {} y-2 x y^{\prime }+a y {y^{\prime }}^{2} = 0 \]

19488

\[ {} x^{2} \left (y-x y^{\prime }\right ) = y {y^{\prime }}^{2} \]

19491

\[ {} 3 y {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

19493

\[ {} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

19494

\[ {} \left (x^{2}+y^{2}\right ) \left (y^{\prime }+1\right )^{2}-2 \left (x +y\right ) \left (y^{\prime }+1\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

19497

\[ {} \sin \left (x y^{\prime }\right ) \cos \left (y\right ) = \cos \left (x y^{\prime }\right ) \sin \left (y\right )+y^{\prime } \]

19500

\[ {} {y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

19501

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

19502

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3} = 0 \]

19503

\[ {} x^{2} {y^{\prime }}^{3}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0 \]

19506

\[ {} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (x^{2}+2 x y+y^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

19514

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

19515

\[ {} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19516

\[ {} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

19517

\[ {} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

19518

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

19519

\[ {} 2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 x y y^{\prime } \]

19522

\[ {} \left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

19523

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

19524

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } \cos \left (x \right )-2 \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y = \sin \left (2 x \right ) \]

19525

\[ {} \sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

19526

\[ {} 2 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (7 x +3\right ) y^{\prime }-3 y = x^{2} \]

19527

\[ {} 2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

19528

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

19529

\[ {} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

19530

\[ {} \left (y^{2}+2 y^{\prime } x^{2}\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0 \]

19536

\[ {} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

19537

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

19538

\[ {} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

19541

\[ {} x^{4} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{3} \]

19542

\[ {} x y^{\prime \prime }+2 y^{\prime } = -y^{2}+y^{\prime } x^{2} \]

19543

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

19544

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

19545

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19546

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19547

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y = {\mathrm e}^{x} \sin \left (x \right ) \]

19548

\[ {} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

19549

\[ {} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y = x \cos \left (x \right ) \]

19550

\[ {} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

19552

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19553

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

19554

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

19555

\[ {} y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y = {\mathrm e}^{6 x} \]

19556

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {y \csc \left (x \right )^{2}}{2} = 0 \]

19557

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y a^{2} = \frac {1}{x^{2}} \]

19558

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

19559

\[ {} y^{\prime \prime } \cos \left (x \right )+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

19560

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

19561

\[ {} x y^{\prime \prime }+\left (x -1\right ) y^{\prime }-y = x^{2} \]

19562

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]

19565

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19566

\[ {} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-\cot \left (x \right ) y = \sin \left (x \right )^{2} \]