83.35.6 problem 6

Internal problem ID [19355]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Misc. Exercise on chapter VII. Page 118
Problem number : 6
Date solved : Monday, March 31, 2025 at 07:09:22 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }&=\frac {1}{\sqrt {a y}} \end{align*}

Maple. Time used: 0.055 (sec). Leaf size: 79
ode:=diff(diff(y(x),x),x) = 1/(a*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {\sqrt {a \textit {\_a}}}{\sqrt {\sqrt {a \textit {\_a}}\, \sqrt {\textit {\_a}}\, \left (c_1 +4 \sqrt {\textit {\_a}}\right )}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {\sqrt {a \textit {\_a}}}{\sqrt {\sqrt {a \textit {\_a}}\, \sqrt {\textit {\_a}}\, \left (c_1 +4 \sqrt {\textit {\_a}}\right )}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 60.067 (sec). Leaf size: 1570
ode=D[y[x],{x,2}]==1/Sqrt[a*y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) - 1/sqrt(a*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : < not supported between instances of NoneType and y