Internal
problem
ID
[19396]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(C)
at
page
133
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 07:12:29 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(tan(x)-1)^2*diff(y(x),x)-n*(n-1)*y(x)*sec(x)^4 = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(Tan[x]-1)^2*D[y[x],x]-n*(n-1)*y[x]*Sec[x]^4==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(-n*(n - 1)*y(x)/cos(x)**4 + (tan(x) - 1)**2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False