Internal
problem
ID
[19430]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
at
end
of
chapter
VIII.
Page
141
Problem
number
:
5
(viii)
Date
solved
:
Monday, March 31, 2025 at 07:13:29 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=(x^2-1)*diff(diff(y(x),x),x)-(4*x^2-3*x-5)*diff(y(x),x)+(4*x^2-6*x-5)*y(x) = exp(2*x); ic:=y(0) = 1, D(y)(0) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2-1)*D[y[x],{x,2}]-(4*x^2-3*x-5)*D[y[x],x]+(4*x^2-6*x-5)*y[x]==Exp[2*x]; ic={y[0]==1,Derivative[1][y][0] == 2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2 - 1)*Derivative(y(x), (x, 2)) + (4*x**2 - 6*x - 5)*y(x) - (4*x**2 - 3*x - 5)*Derivative(y(x), x) - exp(2*x),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-4*x**2*y(x) - x**2*Derivative(y(x), (x, 2)) + 6*x*y(x) + 5*y(x) + exp(2*x) + Derivative(y(x), (x, 2)))/(-4*x**2 + 3*x + 5) cannot be solved by the factorable group method