Internal
problem
ID
[19408]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(E)
at
page
140
Problem
number
:
7
Date
solved
:
Monday, March 31, 2025 at 07:12:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*(1+x)*diff(y(x),x)+2*(1+x)*y(x) = -4*x^3; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*(1+x)*D[y[x],x]+2*(1+x)*y[x]==-4*x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**3 + x**2*Derivative(y(x), (x, 2)) - 2*x*(x + 1)*Derivative(y(x), x) + (2*x + 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**3 + x**2*Derivative(y(x), (x, 2))/2 + x*y(x) + y(x))/(x*(x + 1)) cannot be solved by the factorable group method