Internal
problem
ID
[19386]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VIII.
Linear
equations
of
second
order.
Excercise
VIII
(B)
at
page
128
Problem
number
:
12
Date
solved
:
Monday, March 31, 2025 at 07:12:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-1/x^(1/2)*diff(y(x),x)+1/4*y(x)/x^2*(-8+x^(1/2)+x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-1/Sqrt[x]*D[y[x],x]+y[x]/(4*x^2)*(-8+Sqrt[x]+x)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (sqrt(x) + x - 8)*y(x)/(4*x**2) - Derivative(y(x), x)/sqrt(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - y(x)/(4*x) - y(x)/(4*sqrt(x)) + 2*y(x)/x**(3/2) cannot be solved by the factorable group method