Internal
problem
ID
[19440]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
II.
Equations
of
first
order
and
first
degree
Problem
number
:
Ex
4
page
7
Date
solved
:
Monday, March 31, 2025 at 07:13:52 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=x^3+x*y(x)^2+a^2*y(x)+(y(x)^3+x^2*y(x)-a^2*x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^3+x*y[x]^2+a^2*y[x])+(y[x]^3+y[x]*x^2-a^2*x)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2*y(x) + x**3 + x*y(x)**2 + (-a**2*x + x**2*y(x) + y(x)**3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out