|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime } = 3-y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (-4+t \right )\right ) \cos \left (-4+t \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} y^{\prime \prime } = 8 x^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \sin \left (x +y\right )-y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime }-y^{2} = x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime } = \left (x -y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime } = 3 \sqrt {x y^{2}+9 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sin \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-1+y^{2}\right ) y^{\prime } = 4 x y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime }-x y^{2} = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = 1+\left (x y+3 y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }+\cos \left (x^{2}\right ) = 827 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y^{3}+\left (4 y^{3} x^{3}-3 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y y^{\prime } = x^{2}+x y+y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = -{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = -{\mathrm e}^{-y} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = -2 {y^{\prime }}^{2} x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = -2 {y^{\prime }}^{2} x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } x^{2}-4 y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } x^{2}-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } x^{2} = 4 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } x^{2}+4 y = y^{3}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+y \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (-4+x \right )^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5]
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y y^{\prime }+y^{4} = \sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} x {y^{\prime \prime }}^{2}+2 y = 2 x
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 2 x -y-y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+t^{2} = y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+t^{2} = \frac {1}{y^{2}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime } = y^{{1}/{5}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = 4 t^{2}-t y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sqrt {y^{2}-1}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sqrt {y^{2}-1}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sqrt {25-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sqrt {25-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sqrt {25-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|