5.3.49 Problems 4801 to 4900

Table 5.131: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

14725

\[ {} y^{\prime } = 3-y^{2} \]

14894

\[ {} y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]

14901

\[ {} y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]

14902

\[ {} y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (-4+t \right )\right ) \cos \left (-4+t \right ) \]

14903

\[ {} y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]

14915

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

14954

\[ {} \sin \left (x +y\right )-y y^{\prime } = 0 \]

14957

\[ {} y^{\prime }-y^{2} = x \]

14962

\[ {} y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

14966

\[ {} x y^{\prime } = \left (x -y\right )^{2} \]

14983

\[ {} y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]

14987

\[ {} y^{\prime } = \sin \left (y\right ) \]

14995

\[ {} y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

15001

\[ {} y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

15011

\[ {} \left (-1+y^{2}\right ) y^{\prime } = 4 x y \]

15013

\[ {} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

15014

\[ {} y^{\prime }-x y^{2} = \sqrt {x} \]

15015

\[ {} y^{\prime } = 1+\left (x y+3 y\right )^{2} \]

15021

\[ {} x y^{\prime }+\cos \left (x^{2}\right ) = 827 y \]

15059

\[ {} \left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \]

15081

\[ {} \frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0 \]

15085

\[ {} 2 y^{3}+\left (4 y^{3} x^{3}-3 x y^{2}\right ) y^{\prime } = 0 \]

15086

\[ {} 4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

15118

\[ {} x y y^{\prime } = x^{2}+x y+y^{2} \]

15126

\[ {} x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

15131

\[ {} y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

15146

\[ {} y y^{\prime \prime } = -{y^{\prime }}^{2} \]

15148

\[ {} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

15149

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

15151

\[ {} \left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15157

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

15158

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15159

\[ {} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

15161

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

15162

\[ {} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

15167

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

15168

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15169

\[ {} \left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

15180

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15181

\[ {} y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]

15182

\[ {} y^{\prime \prime } = -{\mathrm e}^{-y} y^{\prime } \]

15184

\[ {} y^{\prime \prime } = -2 {y^{\prime }}^{2} x \]

15185

\[ {} y^{\prime \prime } = -2 {y^{\prime }}^{2} x \]

15187

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15188

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15189

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15190

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15191

\[ {} y^{\prime \prime }+y^{\prime } x^{2}-4 y = x^{3} \]

15192

\[ {} y^{\prime \prime }+y^{\prime } x^{2}-4 y = 0 \]

15193

\[ {} y^{\prime \prime }+y^{\prime } x^{2} = 4 y \]

15194

\[ {} y^{\prime \prime }+y^{\prime } x^{2}+4 y = y^{3} \]

15197

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

15199

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

15200

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

15206

\[ {} y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

15207

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

15210

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

15211

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0 \]

15219

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15220

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15224

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

15233

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

15447

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

15453

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

15454

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15455

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15505

\[ {} x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

15507

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

15512

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

15606

\[ {} y^{\prime \prime }+x y = \sin \left (x \right ) \]

15608

\[ {} y^{\prime \prime }-y^{2} = 0 \]

15619

\[ {} \sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

15623

\[ {} y^{\prime }+y \ln \left (x \right ) = 0 \]

15640

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

15641

\[ {} \left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

15643

\[ {} \left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

15644

\[ {} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

15648

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (-4+x \right )^{2}} = 0 \]

15655

\[ {} \left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

15681

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

15708

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

15711

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

15715

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15716

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

15718

\[ {} 2 x -y-y y^{\prime } = 0 \]

15735

\[ {} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

15766

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

15780

\[ {} y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

15790

\[ {} y^{\prime }+t^{2} = y^{2} \]

15791

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

15793

\[ {} y^{\prime } = y^{{1}/{5}} \]

15795

\[ {} y^{\prime } = 4 t^{2}-t y^{2} \]

15801

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

15803

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

15805

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

15807

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

15808

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

15814

\[ {} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]

15829

\[ {} 4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

15832

\[ {} \frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]