Internal
problem
ID
[14901]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
6.
Laplace
transform.
Section
6.6.
page
624
Problem
number
:
2
Date
solved
:
Monday, March 31, 2025 at 01:01:58 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+diff(y(t),t)+5*y(t) = Heaviside(t-2)*sin(4*t-8); ic:=y(0) = -2, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]+5*y[t]==UnitStep[t-2]*Sin[4*(t-2)]; ic={y[0]==-2,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(5*y(t) - sin(4*t - 8)*Heaviside(t - 2) + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): -2, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out