Internal
problem
ID
[15708]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
39.
Critical
points,
Direction
fields
and
trajectories.
Additional
Exercises.
page
815
Problem
number
:
39.1
(d)
Date
solved
:
Monday, March 31, 2025 at 01:45:41 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)*y(t)-6*y(t), diff(y(t),t) = x(t)-y(t)-5]; dsolve(ode);
ode={D[x[t],t]==x[t]*y[t]-6*y[t],D[y[t],t]==x[t]-y[t]-5}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t)*y(t) + 6*y(t) + Derivative(x(t), t),0),Eq(-x(t) + y(t) + Derivative(y(t), t) + 5,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out