Internal
problem
ID
[15081]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
7.
The
exact
form
and
general
integrating
fators.
Additional
exercises.
page
141
Problem
number
:
7.5
(c)
Date
solved
:
Monday, March 31, 2025 at 01:22:53 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=2*y(x)/x+(4*x^2*y(x)-3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*y[x]/x+(4*x^2*y[x]-3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((4*x**2*y(x) - 3)*Derivative(y(x), x) + 2*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out