74.1.26 problem 33

Internal problem ID [15735]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 33
Date solved : Monday, March 31, 2025 at 01:46:36 PM
CAS classification : [_exact]

\begin{align*} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 15
ode:=y(x)/x+cos(y(x))+(ln(x)-x*sin(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \cos \left (y\right ) x +\ln \left (x \right ) y+c_1 = 0 \]
Mathematica. Time used: 0.229 (sec). Leaf size: 19
ode=(y[x]/x+Cos[y[x]])+(Log[x]-x*Sin[y[x]])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}[-y(x) \log (x)-x \cos (y(x))=c_1,y(x)] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x*sin(y(x)) + log(x))*Derivative(y(x), x) + cos(y(x)) + y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out