Internal
problem
ID
[15059]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.7
(g)
Date
solved
:
Monday, March 31, 2025 at 01:18:08 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=(2*x*y(x)+2*x^2)*diff(y(x),x) = x^2+2*x*y(x)+2*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=(2*x*y[x]+2*x^2)*D[y[x],x]==x^2+2*x*y[x]+2*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - 2*x*y(x) + (2*x**2 + 2*x*y(x))*Derivative(y(x), x) - 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational