74.1.9 problem 15

Internal problem ID [15718]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 15
Date solved : Monday, March 31, 2025 at 01:45:57 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 2 x -y-y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.025 (sec). Leaf size: 719
ode:=2*x-y(x)-y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.035 (sec). Leaf size: 38
ode=(2*x-y[x])-y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]}{(K[1]-1) (K[1]+2)}dK[1]=-\log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x - y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ZeroDivisionError : polynomial division