Internal
problem
ID
[15619]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
34.
Power
series
solutions
II:
Generalization
and
theory.
Additional
Exercises.
page
678
Problem
number
:
34.5
(j)
Date
solved
:
Monday, March 31, 2025 at 01:43:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=sin(Pi*x^2)*diff(diff(y(x),x),x)+x^2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=Sin[Pi*x^2]*D[y[x],{x,2}]+x^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x) + sin(pi*x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE x**2*y(x) + sin(pi*x**2)*Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_regular