73.9.17 problem 14.2 (g)

Internal problem ID [15207]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.2 (g)
Date solved : Monday, March 31, 2025 at 01:31:17 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x +1\right ) y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{-x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=(1+x)*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \,{\mathrm e}^{-x} \]
Mathematica. Time used: 0.205 (sec). Leaf size: 89
ode=(x+1)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x-\frac {K[1]+2}{2 K[1]+2}dK[1]-\frac {1}{2} \int _1^x\frac {K[2]}{K[2]+1}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}-\frac {K[1]+2}{2 K[1]+2}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (x + 1)*Derivative(y(x), (x, 2)) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False