73.23.33 problem 33.11 (g)

Internal problem ID [15608]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.11 (g)
Date solved : Monday, March 31, 2025 at 01:42:16 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }-y^{2}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 52
Order:=5; 
ode:=diff(diff(y(x),x),x)-y(x)^2 = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {x^{4} y \left (0\right )^{3}}{12}+\frac {y \left (0\right )^{2} x^{2}}{2}+\left (1+\frac {y^{\prime }\left (0\right ) x^{3}}{3}\right ) y \left (0\right )+y^{\prime }\left (0\right ) x +\frac {{y^{\prime }\left (0\right )}^{2} x^{4}}{12}+O\left (x^{5}\right ) \]
Mathematica. Time used: 0.025 (sec). Leaf size: 147
ode=D[y[x],{x,2}]-y[x]^2==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,4}]
 
\[ y(x)\to \frac {1}{12} x^4 \left (6 \wp \left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right ){}^3+\wp ''\left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right ){}^2\right )+\frac {\sqrt [3]{2} x^3 \wp \left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right ) \wp ''\left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right )}{3^{2/3}}+\frac {3^{2/3} x^2 \wp \left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right ){}^2}{\sqrt [3]{2}}+\sqrt [3]{6} \wp \left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right )+x \wp ''\left (\frac {c_1}{\sqrt [3]{6}};0,c_2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=5)
 
ValueError : ODE -y(x)**2 + Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_regular