74.4.7 problem 7

Internal problem ID [15829]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 7
Date solved : Monday, March 31, 2025 at 01:57:17 PM
CAS classification : [_separable]

\begin{align*} 4 \sinh \left (4 y\right ) y^{\prime }&=6 \cosh \left (3 x \right ) \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=4*sinh(4*y(x))*diff(y(x),x) = 6*cosh(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {arccosh}\left (2 \sinh \left (3 x \right )+6 c_1 \right )}{4} \]
Mathematica. Time used: 0.443 (sec). Leaf size: 39
ode=4*Sinh[4*y[x]]*D[y[x],x]==6*Cosh[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\sinh (4 K[1])dK[1]\&\right ]\left [\int _1^x\frac {3}{2} \cosh (3 K[2])dK[2]+c_1\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*sinh(4*y(x))*Derivative(y(x), x) - 6*cosh(3*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out