73.16.13 problem 24.1 (m)

Internal problem ID [15454]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 24. Variation of parameters. Additional exercises page 444
Problem number : 24.1 (m)
Date solved : Monday, March 31, 2025 at 01:38:20 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=x*diff(diff(y(x),x),x)+(2*x+2)*diff(y(x),x)+2*y(x) = 8*exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \,{\mathrm e}^{-2 x}+c_1 +{\mathrm e}^{2 x}}{x} \]
Mathematica. Time used: 0.04 (sec). Leaf size: 31
ode=x*D[y[x],{x,2}]+(2+2*x)*D[y[x],x]+2*y[x]==8*Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 e^{2 x}+2 c_1 e^{-2 x}+c_2}{2 x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (2*x + 2)*Derivative(y(x), x) + 2*y(x) - 8*exp(2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-x*Derivative(y(x), (x, 2))/2 - y(x) + 4*exp(2*x))/(x + 1) cannot be solved by the factorable group method