Internal
problem
ID
[15011]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
4.
SEPARABLE
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
90
Problem
number
:
4.8
(g)
Date
solved
:
Monday, March 31, 2025 at 01:12:14 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=(-1+y(x)^2)*diff(y(x),x) = 4*x*y(x); ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(y[x]^2-1)*D[y[x],x]==4*x*y[x]; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*y(x) + (y(x)**2 - 1)*Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)
ValueError : Couldnt solve for initial conditions