Internal
problem
ID
[1756]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.1
Homogeneous
linear
equations.
Page
203
Problem
number
:
23
Date
solved
:
Saturday, March 29, 2025 at 11:38:41 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-2*x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)+(-2+2*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-2*x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]+(2*x-2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2 - x**2)*Derivative(y(x), x) + (2*x - 2)*y(x) + (x**2 - 2*x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False