Internal
problem
ID
[1834]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
30
Date
solved
:
Saturday, March 29, 2025 at 11:40:58 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=(3*x-1)*diff(diff(y(x),x),x)-(3*x+2)*diff(y(x),x)-(6*x-8)*y(x) = (3*x-1)^2*exp(2*x); ic:=y(0) = 1, D(y)(0) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=(3*x-1)*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]-(6*x-8)*y[x]==(3*x-1)^2*Exp[2*x]; ic={y[0]==1,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(3*x - 1)**2*exp(2*x) + (3*x - 1)*Derivative(y(x), (x, 2)) - (3*x + 2)*Derivative(y(x), x) - (6*x - 8)*y(x),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-9*x**2*exp(2*x) - 6*x*y(x) + 6*x*exp(2*x) + 3*x*Derivative(y(x), (x, 2)) + 8*y(x) - exp(2*x) - Derivative(y(x), (x, 2)))/(3*x + 2) cannot be solved by the factorable group method