12.6.25 problem 25

Internal problem ID [1704]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number : 25
Date solved : Saturday, March 29, 2025 at 11:35:10 PM
CAS classification : [_exact, _rational]

\begin{align*} x^{3} y^{4}+x +\left (x^{4} y^{3}+y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 111
ode:=x^3*y(x)^4+x+(x^4*y(x)^3+y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-1-\sqrt {-2 x^{6}-4 c_1 \,x^{4}+1}}}{x^{2}} \\ y &= \frac {\sqrt {-1+\sqrt {-2 x^{6}-4 c_1 \,x^{4}+1}}}{x^{2}} \\ y &= -\frac {\sqrt {-1-\sqrt {-2 x^{6}-4 c_1 \,x^{4}+1}}}{x^{2}} \\ y &= -\frac {\sqrt {-1+\sqrt {-2 x^{6}-4 c_1 \,x^{4}+1}}}{x^{2}} \\ \end{align*}
Mathematica. Time used: 15.817 (sec). Leaf size: 135
ode=(x^3*y[x]^4+x)+(x^4*y[x]^3+y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-\frac {1+\sqrt {-2 x^6+4 c_1 x^4+1}}{x^4}} \\ y(x)\to \sqrt {-\frac {1+\sqrt {-2 x^6+4 c_1 x^4+1}}{x^4}} \\ y(x)\to -\sqrt {\frac {-1+\sqrt {-2 x^6+4 c_1 x^4+1}}{x^4}} \\ y(x)\to \sqrt {\frac {-1+\sqrt {-2 x^6+4 c_1 x^4+1}}{x^4}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*y(x)**4 + x + (x**4*y(x)**3 + y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out