12.14.28 problem 30

Internal problem ID [1969]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 30
Date solved : Saturday, March 29, 2025 at 11:44:33 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.025 (sec). Leaf size: 46
Order:=6; 
ode:=2*x^2*(3*x+2)*diff(diff(y(x),x),x)+x*(4+11*x)*diff(y(x),x)-(1-x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 x \left (1-\frac {5}{8} x +\frac {55}{96} x^{2}-\frac {935}{1536} x^{3}+\frac {4301}{6144} x^{4}-\frac {124729}{147456} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-\frac {5}{4} x +\frac {25}{32} x^{2}-\frac {275}{384} x^{3}+\frac {4675}{6144} x^{4}-\frac {21505}{24576} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.047 (sec). Leaf size: 94
ode=2*x^2*(2+3*x)*D[y[x],{x,2}]+x*(4+11*x)*D[y[x],x]-(1-x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {935 x^{7/2}}{6144}+\frac {55 x^{5/2}}{384}-\frac {5 x^{3/2}}{32}+\frac {\sqrt {x}}{4}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {4301 x^{9/2}}{6144}-\frac {935 x^{7/2}}{1536}+\frac {55 x^{5/2}}{96}-\frac {5 x^{3/2}}{8}+\sqrt {x}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*(3*x + 2)*Derivative(y(x), (x, 2)) + x*(11*x + 4)*Derivative(y(x), x) - (1 - x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
IndexError : list index out of range