Internal
problem
ID
[1742]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.1
Homogeneous
linear
equations.
Page
203
Problem
number
:
4
Date
solved
:
Saturday, March 29, 2025 at 11:38:16 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
With initial conditions
ode:=(x^2-1)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 0; ic:=y(0) = -5, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2-1)*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==0; ic={y[0]==-5,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {y(0): -5, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)
False