Internal
problem
ID
[1813]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
9
Date
solved
:
Saturday, March 29, 2025 at 11:40:12 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 4*x^(1/2)*exp(x); dsolve(ode,y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]+(4*x-8*x^2)*D[y[x],x]+(4*x^2-4*x-1)*y[x]==4*x^(1/2)*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*sqrt(x)*exp(x) + 4*x**2*Derivative(y(x), (x, 2)) + (-8*x**2 + 4*x)*Derivative(y(x), x) + (4*x**2 - 4*x - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-sqrt(x)*exp(x) + x**2*y(x) + x**2*Derivative(y(x), (x, 2)) - x*y(x) - y(x)/4)/(x*(2*x - 1)) cannot be solved by the factorable group method