12.9.29 problem 29

Internal problem ID [1785]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number : 29
Date solved : Saturday, March 29, 2025 at 11:39:15 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=(x^2-2*x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)+(-2+2*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,x^{2}+c_2 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 18
ode=(x^2-2*x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]+(2*x-2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 x^2+c_1 e^x \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2 - x**2)*Derivative(y(x), x) + (2*x - 2)*y(x) + (x**2 - 2*x)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False