Internal
problem
ID
[1710]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Exact
equations.
Section
2.5
Page
79
Problem
number
:
40
Date
solved
:
Saturday, March 29, 2025 at 11:35:32 PM
CAS
classification
:
[[_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=diff(y(x),x)+2*x*y(x) = -exp(-x^2)*(3*x+2*y(x)*exp(x^2))/(2*x+3*y(x)*exp(x^2)); ic:=y(0) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]+2*x*y[x]== -Exp[-x^2]*(3*x+2*y[x]*Exp[x^2])/(2*x+3*y[x]*Exp[x^2]); ic=y[0]==-1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + Derivative(y(x), x) + (3*x + 2*y(x)*exp(x**2))*exp(-x**2)/(2*x + 3*y(x)*exp(x**2)),0) ics = {y(0): -1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-4*x**2*y(x)*exp(x**2) - 6*x*y(x)**2*exp(2*x**2) - 3*x - 2*y(x)*exp(x**2))*exp(-x**2)/(2*x + 3*y(x)*exp(x**2)) cannot be solved by the factorable group method