13.4.2 problem 4

Internal problem ID [2339]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 1.9. Page 66
Problem number : 4
Date solved : Saturday, March 29, 2025 at 11:56:47 PM
CAS classification : [_exact]

\begin{align*} 1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 32
ode:=1+exp(t*y(t))*(1+t*y(t))+(1+exp(t*y(t))*t^2)*diff(y(t),t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {-c_1 t -t^{2}-\operatorname {LambertW}\left (t^{2} {\mathrm e}^{-t \left (c_1 +t \right )}\right )}{t} \]
Mathematica. Time used: 2.786 (sec). Leaf size: 31
ode=1+Exp[t*y[t]]*(1+t*y[t])+(1+Exp[t*y[t]]*t^2)*D[y[t],t] == 0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -\frac {W\left (t^2 e^{t (-t+c_1)}\right )}{t}-t+c_1 \]
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((t*y(t) + 1)*exp(t*y(t)) + (t**2*exp(t*y(t)) + 1)*Derivative(y(t), t) + 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
Timed Out