Internal
problem
ID
[1822]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
18
Date
solved
:
Saturday, March 29, 2025 at 11:40:34 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x*diff(diff(y(x),x),x)-diff(y(x),x)-4*x^3*y(x) = 8*x^5; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-D[y[x],x]-4*x^3*y[x]==8*x^5; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**5 - 4*x**3*y(x) + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-8*x**4 - 4*x**2*y(x) + Derivative(y(x), (x, 2))) + Derivative(y(x), x) cannot be solved by the factorable group method