Internal
problem
ID
[10507]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
506
Date
solved
:
Sunday, March 30, 2025 at 05:31:03 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x^2*(-1+x*y(x)^2)*diff(y(x),x)^2+2*x^2*y(x)^2*(y(x)-x)*diff(y(x),x)-y(x)^2*(x^2*y(x)-1) = 0; dsolve(ode,y(x), singsol=all);
ode=-(y[x]^2*(-1 + x^2*y[x])) + 2*x^2*y[x]^2*(-x + y[x])*D[y[x],x] + x^2*(-1 + x*y[x]^2)*D[y[x],x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*(-x + y(x))*y(x)**2*Derivative(y(x), x) + x**2*(x*y(x)**2 - 1)*Derivative(y(x), x)**2 - (x**2*y(x) - 1)*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out