60.2.307 problem 885

Internal problem ID [10881]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 885
Date solved : Sunday, March 30, 2025 at 07:19:08 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=-\frac {i \left (32 i x +64+64 y^{4}+32 x^{2} y^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 x^{4} y^{2}+x^{6}\right )}{128 y} \end{align*}

Maple
ode:=diff(y(x),x) = -1/128*I*(32*I*x+64+64*y(x)^4+32*x^2*y(x)^2+4*x^4+64*y(x)^6+48*x^2*y(x)^4+12*x^4*y(x)^2+x^6)/y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x] == ((-1/128*I)*(64 + (32*I)*x + 4*x^4 + x^6 + 32*x^2*y[x]^2 + 12*x^4*y[x]^2 + 64*y[x]^4 + 48*x^2*y[x]^4 + 64*y[x]^6))/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**6 + 12*x**4*y(x)**2 + 4*x**4 + 48*x**2*y(x)**4 + 32*x**2*y(x)**2 + x*complex(0, 32) + 64*y(x)**6 + 64*y(x)**4 + 64)*complex(0, 1/128)/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out