Internal
problem
ID
[10347]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
340
Date
solved
:
Sunday, March 30, 2025 at 04:18:23 PM
CAS
classification
:
unknown
ode:=(e1*(x+a)/((x+a)^2+y(x)^2)^(3/2)+e2*(x-a)/((x-a)^2+y(x)^2)^(3/2))*diff(y(x),x)-y(x)*(e1/((x+a)^2+y(x)^2)^(3/2)+e2/((x-a)^2+y(x)^2)^(3/2)) = 0; dsolve(ode,y(x), singsol=all);
ode=-(y[x]*(e2/((-a + x)^2 + y[x]^2)^(3/2) + e1/((a + x)^2 + y[x]^2)^(3/2))) + ((e2*(-a + x))/((-a + x)^2 + y[x]^2)^(3/2) + (e1*(a + x))/((a + x)^2 + y[x]^2)^(3/2))*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") e1 = symbols("e1") e2 = symbols("e2") y = Function("y") ode = Eq((-e1/((a + x)**2 + y(x)**2)**(3/2) - e2/((-a + x)**2 + y(x)**2)**(3/2))*y(x) + (e1*(a + x)/((a + x)**2 + y(x)**2)**(3/2) + e2*(-a + x)/((-a + x)**2 + y(x)**2)**(3/2))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out