60.1.333 problem 340

Internal problem ID [10347]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 340
Date solved : Sunday, March 30, 2025 at 04:18:23 PM
CAS classification : unknown

\begin{align*} \left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right )&=0 \end{align*}

Maple
ode:=(e1*(x+a)/((x+a)^2+y(x)^2)^(3/2)+e2*(x-a)/((x-a)^2+y(x)^2)^(3/2))*diff(y(x),x)-y(x)*(e1/((x+a)^2+y(x)^2)^(3/2)+e2/((x-a)^2+y(x)^2)^(3/2)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=-(y[x]*(e2/((-a + x)^2 + y[x]^2)^(3/2) + e1/((a + x)^2 + y[x]^2)^(3/2))) + ((e2*(-a + x))/((-a + x)^2 + y[x]^2)^(3/2) + (e1*(a + x))/((a + x)^2 + y[x]^2)^(3/2))*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
e1 = symbols("e1") 
e2 = symbols("e2") 
y = Function("y") 
ode = Eq((-e1/((a + x)**2 + y(x)**2)**(3/2) - e2/((-a + x)**2 + y(x)**2)**(3/2))*y(x) + (e1*(a + x)/((a + x)**2 + y(x)**2)**(3/2) + e2*(-a + x)/((-a + x)**2 + y(x)**2)**(3/2))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out