60.2.259 problem 835

Internal problem ID [10833]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 835
Date solved : Sunday, March 30, 2025 at 07:11:16 PM
CAS classification : [NONE]

\begin{align*} y^{\prime }&=-\frac {1}{-\left (y^{3}\right )^{{2}/{3}} x -\textit {\_F1} \left (y^{3}-3 \ln \left (x \right )\right ) \left (y^{3}\right )^{{1}/{3}} x} \end{align*}

Maple
ode:=diff(y(x),x) = -1/(-(y(x)^3)^(2/3)*x-_F1(y(x)^3-3*ln(x))*(y(x)^3)^(1/3)*x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x] == -(-(x*F1[-3*Log[x] + y[x]^3]*(y[x]^3)^(1/3)) - x*(y[x]^3)^(2/3))^(-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + 1/(-x*(y(x)**3)**(2/3) - x*(y(x)**3)**(1/3)*_F1(y(x)**3 - 3*log(x))),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out