Internal
problem
ID
[11504]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1540
Date
solved
:
Sunday, March 30, 2025 at 08:23:48 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+a*(b*x-1)*diff(diff(y(x),x),x)+a*b*diff(y(x),x)+lambda*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=\[Lambda]*y[x] + a*b*D[y[x],x] + a*(-1 + b*x)*D[y[x],{x,2}] + Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(a*b*Derivative(y(x), x) + a*(b*x - 1)*Derivative(y(x), (x, 2)) + lambda_*y(x) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*b*x*Derivative(y(x), (x, 2)) + a*Derivative(y(x), (x, 2)) - lambda_*y(x) - Derivative(y(x), (x, 4)))/(a*b) cannot be solved by the factorable group method