60.3.423 problem 1443

Internal problem ID [11419]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1443
Date solved : Sunday, March 30, 2025 at 08:21:48 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \end{align*}

Maple
ode:=diff(diff(y(x),x),x) = -1/2*diff(f(x),x)*diff(y(x),x)/f(x)-g(x)/f(x)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}] == -((g[x]*y[x])/f[x]) - (Derivative[1][f][x]*D[y[x],x])/(2*f[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
f = Function("f") 
g = Function("g") 
ode = Eq(Derivative(y(x), (x, 2)) + g(x)*y(x)/f(x) + Derivative(f(x), x)*Derivative(y(x), x)/(2*f(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational