Internal
problem
ID
[11419]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1443
Date
solved
:
Sunday, March 30, 2025 at 08:21:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -1/2*diff(f(x),x)*diff(y(x),x)/f(x)-g(x)/f(x)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -((g[x]*y[x])/f[x]) - (Derivative[1][f][x]*D[y[x],x])/(2*f[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") f = Function("f") g = Function("g") ode = Eq(Derivative(y(x), (x, 2)) + g(x)*y(x)/f(x) + Derivative(f(x), x)*Derivative(y(x), x)/(2*f(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational